Zadatak 381 (Marija, strukovna škola)

Pojednostavnite:
$$\left(\frac{a^3+b^3}{a-b}\right)^n \cdot \left(\frac{a^2-b^2}{a^2-a\cdot b+b^2}\right)^n$$
.
A. $(a+b)^{2\cdot n}$ B. $(a-b)^{2\cdot n}$ C. $(a-b)^{-n}$ D. $(a+b)^{-n}$

Rješenje 381

Ponovimo!

$$a^{n} \cdot b^{n} = (a \cdot b)^{n} , \quad a^{3} + b^{3} = (a + b) \cdot (a^{2} - a \cdot b + b^{2}) , \quad a^{2} - b^{2} = (a - b) \cdot (a + b).$$

$$a^{1} = a , \quad a^{n} \cdot a^{m} = a^{n + m} , \quad (a^{n})^{m} = a^{n \cdot m}.$$

$$\left(\frac{a^{3} + b^{3}}{a - b}\right)^{n} \cdot \left(\frac{a^{2} - b^{2}}{a^{2} - a \cdot b + b^{2}}\right)^{n} = \left(\frac{a^{3} + b^{3}}{a - b} \cdot \frac{a^{2} - b^{2}}{a^{2} - a \cdot b + b^{2}}\right)^{n} =$$

$$= \left(\frac{(a + b) \cdot (a^{2} - a \cdot b + b^{2})}{a - b} \cdot \frac{(a - b) \cdot (a + b)}{a^{2} - a \cdot b + b^{2}}\right)^{n} = \left(\frac{(a + b) \cdot (a^{2} - a \cdot b + b^{2})}{a - b} \cdot \frac{(a - b) \cdot (a + b)}{a^{2} - a \cdot b + b^{2}}\right)^{n} =$$

$$= \left((a + b) \cdot (a + b)\right)^{n} = \left((a + b)^{2}\right)^{n} = (a + b)^{2 \cdot n}.$$
Ddgovor je pod A.
Viežba 381

Odgovor je pod A. Vježba 381

Pojednostavnite:
$$\left(\frac{a^3+b^3}{a+b}\right)^n \cdot \left(\frac{a-b}{a^2-a\cdot b+b^2}\right)^n$$
.
A. $(a+b)^{2\cdot n}$ B. $(a-b)^{2\cdot n}$ C. $(a-b)^n$ D. $(a+b)^{-n}$
at: C.

Rezultat:

Zadatak 382 (Marija, strukovna škola)

Pojednostavnite:
$$\frac{\frac{x}{y} - \frac{y}{x}}{\frac{x}{y} + \frac{y}{x} - 2}$$

$$A. \frac{x - y}{x + y} \qquad B. \frac{x + y}{x - y} \qquad C. \frac{1}{x + y} \qquad D. \frac{1}{x - y}$$

Rješenje 382

Ponovimo!

$$n = \frac{n}{1} \quad , \quad \frac{a}{b} + \frac{c}{d} = \frac{a \cdot d + b \cdot c}{b \cdot d} \quad , \quad \frac{a}{b} - \frac{c}{d} = \frac{a \cdot d - b \cdot c}{b \cdot d}.$$
$$\frac{a}{b} \frac{c}{c} = \frac{a \cdot d}{b \cdot c} \quad , \quad a^2 - b^2 = (a - b) \cdot (a + b) \quad , \quad (a - b)^2 = a^2 - 2 \cdot a \cdot b + b^2.$$

$$\frac{\frac{x}{y} - \frac{y}{x}}{\frac{x}{y} + \frac{y}{x} - 2} = \frac{\frac{x}{y} - \frac{y}{x}}{\frac{x}{y} + \frac{y}{x} - \frac{2}{1}} = \frac{\frac{x^2 - y^2}{x \cdot y}}{\frac{x^2 + y^2 - 2 \cdot x \cdot y}{x \cdot y}} = \frac{\frac{x^2 - y^2}{x \cdot y}}{\frac{x^2 - 2 \cdot x \cdot y + y^2}{x \cdot y}} = \frac{\frac{x^2 - y^2}{x \cdot y}}{\frac{x^2 - 2 \cdot x \cdot y + y^2}{x \cdot y}} = \frac{\frac{x^2 - y^2}{x \cdot y}}{\frac{x^2 - 2 \cdot x \cdot y + y^2}{x \cdot y}} = \frac{\frac{x^2 - y^2}{x \cdot y}}{\frac{x^2 - 2 \cdot x \cdot y + y^2}{x \cdot y}} = \frac{\frac{x^2 - y^2}{x \cdot y}}{\frac{x^2 - 2 \cdot x \cdot y + y^2}{x \cdot y}} = \frac{\frac{x^2 - y^2}{x \cdot y}}{\frac{x^2 - 2 \cdot x \cdot y + y^2}{x \cdot y}} = \frac{\frac{x^2 - y^2}{x \cdot y}}{\frac{x^2 - 2 \cdot x \cdot y + y^2}{x \cdot y}} = \frac{\frac{x^2 - y^2}{x \cdot y}}{\frac{x^2 - 2 \cdot x \cdot y + y^2}{x \cdot y}} = \frac{\frac{x^2 - y^2}{x \cdot y}}{\frac{x^2 - 2 \cdot x \cdot y + y^2}{x \cdot y}} = \frac{\frac{x^2 - y^2}{x \cdot y}}{\frac{x^2 - 2 \cdot x \cdot y + y^2}{x \cdot y}} = \frac{\frac{x^2 - y^2}{x \cdot y}}{\frac{x^2 - 2 \cdot x \cdot y + y^2}{x \cdot y}} = \frac{\frac{x^2 - y^2}{x \cdot y}}{\frac{x^2 - 2 \cdot x \cdot y + y^2}{x \cdot y}} = \frac{\frac{x^2 - y^2}{x \cdot y}}{\frac{x^2 - 2 \cdot x \cdot y + y^2}{x \cdot y}} = \frac{\frac{x^2 - y^2}{x \cdot y}}{\frac{x^2 - 2 \cdot x \cdot y + y^2}{x \cdot y}} = \frac{\frac{x^2 - y^2}{x \cdot y}}{\frac{x^2 - 2 \cdot x \cdot y + y^2}{x \cdot y}} = \frac{\frac{x^2 - y^2}{x \cdot y}}{\frac{x^2 - 2 \cdot x \cdot y + y^2}{x \cdot y}} = \frac{\frac{x^2 - y^2}{x \cdot y}}{\frac{x^2 - 2 \cdot x \cdot y + y^2}{x \cdot y}} = \frac{\frac{x^2 - y^2}{x \cdot y}}{\frac{x^2 - 2 \cdot x \cdot y + y^2}{x \cdot y}} = \frac{\frac{x^2 - y^2}{x \cdot y}}{\frac{x^2 - 2 \cdot x \cdot y + y^2}{x \cdot y}} = \frac{\frac{x^2 - y^2}{x \cdot y}}{\frac{x^2 - 2 \cdot x \cdot y + y^2}{x \cdot y}} = \frac{\frac{x^2 - y^2}{x \cdot y}}{\frac{x^2 - 2 \cdot x \cdot y + y^2}{x \cdot y}} = \frac{\frac{x^2 - y^2}{x \cdot y}}{\frac{x^2 - 2 \cdot x \cdot y + y^2}{x \cdot y}} = \frac{\frac{x^2 - y^2}{x \cdot y}}{\frac{x^2 - 2 \cdot x \cdot y + y^2}{x \cdot y}} = \frac{\frac{x^2 - y^2}{x \cdot y}}{\frac{x^2 - 2 \cdot x \cdot y + y^2}{x \cdot y}} = \frac{\frac{x^2 - y^2}{x \cdot y}}{\frac{x^2 - 2 \cdot x \cdot y + y^2}{x \cdot y}} = \frac{\frac{x^2 - y^2}{x \cdot y}}{\frac{x^2 - 2 \cdot x \cdot y + y^2}{x \cdot y}} = \frac{\frac{x^2 - y^2}{x \cdot y}}{\frac{x^2 - 2 \cdot x \cdot y + y^2}{x \cdot y}} = \frac{\frac{x^2 - y^2}{x \cdot y}}{\frac{x^2 - 2 \cdot x \cdot y + y^2}{x \cdot y}} = \frac{\frac{x^2 - y^2}{x \cdot y}}{\frac{x^2 - 2 \cdot x \cdot y + y^2}{x \cdot y}} = \frac{\frac{x^2 - y^2}{x \cdot y}}{\frac{x^2 - 2 \cdot x \cdot y + y^2}{x \cdot y}} = \frac{\frac{x^2 - y^2}{x \cdot y}}{\frac{x^2 - 2 \cdot x \cdot y + y^2}{x \cdot y}} = \frac{\frac{x^2 - y^2}{x \cdot y}}{\frac{x^2 - 2 \cdot x \cdot y + y^2}{x \cdot y}} = \frac{\frac{x^2 - y^2}{x \cdot y}}{\frac{x^2 - 2$$

Odgovor je pod B. Vježba 382

Pojednostavnite: $\frac{\frac{x}{y} + \frac{y}{x} - 2}{\frac{x}{y} - \frac{y}{x}}.$ A. $\frac{x - y}{x + y} \qquad B. \frac{x + y}{x - y} \qquad C. \frac{1}{x + y} \qquad D. \frac{1}{x - y}$

Rezultat: A.

Pojednostavnite : $\frac{1-\frac{a^3}{b^3}}{1-\frac{a^2}{b^2}}$ e 383 Ponovimo! Zadatak 383 (XY, strukovna škola)

Rješenje 383

$$n = \frac{n}{1} , a^{3} - b^{3} = (a - b) \cdot (a^{2} + a \cdot b + b^{2}) , \frac{\frac{a}{b}}{\frac{c}{c}} = \frac{a \cdot d}{b \cdot c}.$$

$$a^{2} - b^{2} = (a - b) \cdot (a + b) , a^{n} : a^{m} = a^{n - m} , \frac{\frac{a}{a}}{\frac{a^{m}}{a^{m}}} = a^{n - m}.$$

$$\frac{1 - \frac{a^{3}}{b^{3}}}{1 - \frac{a^{2}}{b^{2}}} = \frac{\frac{1}{b^{3}} - \frac{a^{3}}{b^{3}}}{\frac{1}{1} - \frac{a^{2}}{b^{2}}} = \frac{\frac{b^{3} - a^{3}}{b^{3}}}{\frac{b^{2} - a^{2}}{b^{2}}} = \frac{\frac{b^{3} - a^{3}}{b^{2}}}{\frac{b^{2} - a^{2}}{b^{2}}} = \frac{\frac{b^{3} - a^{3}}{b}}{\frac{b^{2} - a^{2}}{1}} = \frac{b^{3} - a^{3}}{b \cdot (b^{2} - a^{2})} =$$

$$= \frac{(b - a) \cdot (b^{2} + b \cdot a + a^{2})}{b \cdot (b - a) \cdot (b + a)} = \frac{(b - a) \cdot (b^{2} + b \cdot a + a^{2})}{b \cdot (b - a) \cdot (b + a)} = \frac{b^{2} + b \cdot a + a^{2}}{b \cdot (b + a)} = \frac{a^{2} + a \cdot b + b^{2}}{b \cdot (a + b)}$$

a

Pojednostavnite:
$$\frac{1-\frac{a^2}{b^2}}{1-\frac{a^3}{b^3}}$$

at:
$$\frac{b \cdot (a+b)}{a^2 + a \cdot b + b^2}.$$

Rezultat:

Zadatak 384 (July, gimnazija)

Pojednostavnite:
$$\frac{1}{x^2 + x \cdot y} + \frac{1}{x \cdot y + y^2} - \frac{1}{x \cdot y}$$
.
A. x *B.* y *C.* 0 *D.* 1

Rješenje 384

Ponovimo!

Zakon distribucije množenja prema zbrajanju.

$$a \cdot (b+c) = a \cdot b + a \cdot c \quad , \quad a \cdot b + a \cdot c = a \cdot (b+c).$$

$$\frac{a}{b} + \frac{c}{d} = \frac{a \cdot d + b \cdot c}{b \cdot d} \quad , \quad \frac{a}{b} - \frac{c}{d} = \frac{a \cdot d - b \cdot c}{b \cdot d}.$$

$$\frac{1}{x^2 + x \cdot y} + \frac{1}{x \cdot y + y^2} - \frac{1}{x \cdot y} = \begin{bmatrix} u \text{ prvom nazivniku izlučimo } x \\ u \text{ drugom nazivniku izlučimo } y \end{bmatrix} = \frac{1}{x \cdot (x+y)} + \frac{1}{y \cdot (x+y)} - \frac{1}{x \cdot y} =$$

$$= \begin{bmatrix} \text{zajednički nazivnik je} \\ x \cdot y \cdot (x+y) \end{bmatrix} = \frac{y + x - (x+y)}{x \cdot y \cdot (x+y)} = \frac{y + x - x - y}{x \cdot y \cdot (x+y)} = \frac{y + x - x - y}{x \cdot y \cdot (x+y)} = \frac{0}{x \cdot y \cdot (x+y)} = 0.$$
Odgovor je pod C.

Vježba 384

Pojednostavnite:
$$\frac{1}{x \cdot y} - \frac{1}{x^2 + x \cdot y} - \frac{1}{x \cdot y + y^2}.$$

A. x B. y C. 0 D. 1

Rezultat: C.

Zadatak 385 (July, gimnazija)

Pojednostavnite:
$$\frac{x}{x^2 + y^2} - \frac{y \cdot (x - y)^2}{x^4 - y^4}.$$
$$A. \frac{1}{x - y} \qquad B. \frac{1}{x + y} \qquad C. \frac{x}{y} \qquad D. \frac{y}{x}$$

Rješenje 385

Ponovimo! Zakon distribucije množenja prema zbrajanju.

$$a \cdot (b+c) = a \cdot b + a \cdot c \quad , \quad a \cdot b + a \cdot c = a \cdot (b+c).$$
$$\left(a^{n}\right)^{m} = a^{n \cdot m} \quad , \quad a^{2} - b^{2} = (a-b) \cdot (a+b) \quad , \quad \frac{a}{b} - \frac{c}{d} = \frac{a \cdot d - b \cdot c}{b \cdot d}.$$

 $(a-b)^2 = a^2 - 2 \cdot a \cdot b + b^2.$

1.inačica

$$\frac{x}{x^{2}+y^{2}} - \frac{y \cdot (x-y)^{2}}{x^{4}-y^{4}} = \frac{x}{x^{2}+y^{2}} - \frac{y \cdot (x-y)^{2}}{(x^{2})^{2}-(y^{2})^{2}} = \frac{x}{x^{2}+y^{2}} - \frac{y \cdot (x-y)^{2}}{(x^{2}-y^{2}) \cdot (x^{2}+y^{2})} = \\ = \frac{x \cdot (x^{2}-y^{2}) - y \cdot (x-y)^{2}}{(x^{2}-y^{2}) \cdot (x^{2}+y^{2})} = \frac{x \cdot (x-y) \cdot (x+y) - y \cdot (x-y)^{2}}{(x^{2}-y^{2}) \cdot (x^{2}+y^{2})} = \frac{(x-y) \cdot [x \cdot (x+y) - y \cdot (x-y)]}{(x^{2}-y^{2}) \cdot (x^{2}+y^{2})} = \\ = \frac{(x-y) \cdot [x^{2}+x \cdot y - x \cdot y + y^{2}]}{(x^{2}-y^{2}) \cdot (x^{2}+y^{2})} = \frac{(x-y) \cdot [x^{2}+x \cdot y - x \cdot y + y^{2}]}{(x^{2}-y^{2}) \cdot (x^{2}+y^{2})} = \frac{(x-y) \cdot [x^{2}+x \cdot y - x \cdot y + y^{2}]}{(x^{2}-y^{2}) \cdot (x^{2}+y^{2})} = \frac{(x-y) \cdot (x^{2}+y^{2})}{(x^{2}-y^{2}) \cdot (x^{2}+y^{2})} = \frac{(x-y) \cdot (x^{2}+y^{2})}{(x^{2}-y^{2}) \cdot (x^{2}+y^{2})} = \frac{(x-y) \cdot (x^{2}+y^{2})}{(x^{2}-y^{2}) \cdot (x^{2}+y^{2})} = \frac{x-y}{(x-y) \cdot (x+y)} = \frac{x-y}{(x-y) \cdot (x+y)} = \frac{1}{x+y}.$$

Odgovor je pod B.

2.inačica

$$\frac{x}{x^{2}+y^{2}} - \frac{y \cdot (x-y)^{2}}{x^{4}-y^{4}} = \frac{x}{x^{2}+y^{2}} - \frac{y \cdot (x-y)^{2}}{\left(x^{2}\right)^{2}-\left(y^{2}\right)^{2}} = \frac{x}{x^{2}+y^{2}} - \frac{y \cdot (x-y)^{2}}{\left(x^{2}-y^{2}\right) \cdot \left(x^{2}+y^{2}\right)} = \frac{x \cdot \left(x^{2}-y^{2}\right) \cdot \left(x^{2}+y^{2}\right)}{\left(x^{2}-y^{2}\right) \cdot \left(x^{2}+y^{2}\right)} = \frac{x^{3}-x \cdot y^{2}-x^{2} \cdot y+2 \cdot x \cdot y^{2}-y^{3}}{\left(x^{2}-y^{2}\right) \cdot \left(x^{2}+y^{2}\right)} = \frac{x^{3}+x \cdot y^{2}-x^{2} \cdot y-y^{3}}{\left(x^{2}-y^{2}\right) \cdot \left(x^{2}+y^{2}\right)} = \frac{x \cdot \left(x^{2}+y^{2}\right) - y \cdot \left(x^{2}+y^{2}\right)}{\left(x^{2}-y^{2}\right) \cdot \left(x^{2}+y^{2}\right)} = \frac{\left(x^{2}+y^{2}\right) \cdot \left(x-y\right)}{\left(x^{2}-y^{2}\right) \cdot \left(x^{2}+y^{2}\right)} = \frac{x-y}{\left(x-y\right) \cdot \left(x+y\right)} = \frac{x-y}{\left(x-y\right) \cdot \left(x+y\right)} = \frac{1}{x+y}.$$

Odgovor je pod B.

Vježba 385

Pojednostavnite:
$$\frac{y \cdot (x - y)^2}{x^4 - y^4} - \frac{x}{x^2 + y^2}$$
.
A. $\frac{-1}{y - x}$ *B*. $\frac{1}{y - x}$ *C*. $-\frac{x}{y}$ *D*. $-\frac{y}{x}$

Rezultat: B.

Zadatak 386 (Uporna Katarina ©, gimnazija)

Pojednostavnite:
$$\left(\frac{a}{b} - \frac{b}{a}\right)^2 + \left(a - \frac{a^2 - b^2}{a \cdot b}\right) \cdot \left(a + \frac{a^2 - b^2}{a \cdot b}\right)$$

Rješenje 386

Ponovimo!

$$\frac{a}{b} - \frac{c}{d} = \frac{a \cdot d - b \cdot c}{b \cdot d} , \quad (a - b) \cdot (a + b) = a^2 - b^2 , \quad \left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}.$$

$$\left(\frac{a}{b} - \frac{b^2}{a}\right)^2 + \left(a - \frac{a^2 - b^2}{a \cdot b}\right) \cdot \left(a + \frac{a^2 - b^2}{a \cdot b}\right) = \left(\frac{a^2 - b^2}{a \cdot b}\right)^2 + \left(a - \frac{a^2 - b^2}{a \cdot b}\right) \cdot \left(a + \frac{a^2 - b^2}{a \cdot b}\right) =$$

$$= \left(\frac{a^2 - b^2}{a \cdot b}\right)^2 + \left(a - \frac{a^2 - b^2}{a \cdot b}\right) \cdot \left(a + \frac{a^2 - b^2}{a \cdot b}\right) = \left(\frac{a^2 - b^2}{a \cdot b}\right)^2 + a^2 - \left(\frac{a^2 - b^2}{a \cdot b}\right)^2 =$$

$$= \frac{a^2 - b^2}{a \cdot b} + \frac{a^2 - b^2}{a \cdot b} + \frac{a^2 - b^2}{a \cdot b} + \frac{a^2 - b^2}{a \cdot b} = \left(\frac{a^2 - b^2}{a \cdot b}\right)^2 + a^2 - \left(\frac{a^2 - b^2}{a \cdot b}\right)^2 =$$

$$= \left(\frac{a^2 - b^2}{a \cdot b}\right)^2 + a^2 - \left(\frac{a^2 - b^2}{a \cdot b}\right)^2 = a^2.$$

Vježba 386

Pojednostavnite:
$$\left(\frac{a}{b} - \frac{b}{a}\right)^2 + \left(a + \frac{b^2 - a^2}{a \cdot b}\right) \cdot \left(a - \frac{b^2 - a^2}{a \cdot b}\right).$$

t: a^2 .

Rezultat:

Zadatak 387 (Uporna Katarina ©, gimnazija)

Pojednostavnite:
$$\left(\frac{a}{b} - \frac{b}{a}\right)^2 + \left(a - \frac{a^2 - b^2}{a \cdot b}\right) \cdot \left(a + \frac{a^2 - b^2}{a \cdot b}\right).$$

Rješenje 387

Ponovimo!

$$\frac{a}{b} - \frac{c}{d} = \frac{a \cdot d - b \cdot c}{b \cdot d} , \quad (a - b) \cdot (a + b) = a^2 - b^2 , \quad \left(\frac{a}{b}\right)^n = \frac{a^n}{b^n} , \quad (a - b)^2 = (b - a)^2 .$$

$$\left(\frac{b}{a} - \frac{a}{b}\right)^2 + \left(a - \frac{a^2 - b^2}{a \cdot b}\right) \cdot \left(a + \frac{a^2 - b^2}{a \cdot b}\right) = \left(\frac{b^2 - a^2}{a \cdot b}\right)^2 + \left(a - \frac{a^2 - b^2}{a \cdot b}\right) \cdot \left(a + \frac{a^2 - b^2}{a \cdot b}\right) =$$

$$= \left(\frac{b^2 - a^2}{a \cdot b}\right)^2 + \left(a - \frac{a^2 - b^2}{a \cdot b}\right) \cdot \left(a + \frac{a^2 - b^2}{a \cdot b}\right) = \left(\frac{b^2 - a^2}{a \cdot b}\right)^2 + a^2 - \left(\frac{a^2 - b^2}{a \cdot b}\right)^2 =$$

$$= \frac{\left(b^2 - a^2\right)^2}{(a \cdot b)^2} + a^2 - \frac{\left(a^2 - b^2\right)^2}{(a \cdot b)^2} = \frac{\left(a^2 - b^2\right)^2}{(a \cdot b)^2} + a^2 - \frac{\left(a^2 - b^2\right)^2}{(a \cdot b)^2} =$$

$$=\frac{\left(a^{2}-b^{2}\right)^{2}}{\left(a\cdot b\right)^{2}}+a^{2}-\frac{\left(a^{2}-b^{2}\right)^{2}}{\left(a\cdot b\right)^{2}}=a^{2}.$$

Pojednostavnite:
$$\left(\frac{b}{a} - \frac{a}{b}\right)^2 + \left(a + \frac{b^2 - a^2}{a \cdot b}\right) \cdot \left(a - \frac{b^2 - a^2}{a \cdot b}\right).$$

t: a^2 .

Rezultat:

Zadatak 388 (Dvije maturantice, gimnazija)

Ako je
$$(a+b\cdot\sqrt{2})^2 = 9+4\cdot\sqrt{2}$$
, onda je:
A. $a\cdot b = 6$ B. $a\cdot b = 4$ C. $a\cdot b = 3$ D. $a\cdot b = 2$

Rješenje 388

Ponovimo!

$$(a+b)^{2} = a^{2} + 2 \cdot a \cdot b + b^{2}$$
, $(\sqrt{a})^{2} = a$, $(a \cdot b)^{2} = a^{2} \cdot b^{2}$.
 $a^{2} = b^{2} \implies a = b$, $a, b > 0$.

Poučak o jednakosti polinoma:

Dva polinoma jednaka su ako i samo ako su istog stupnja i ako su im koeficijenti uz iste potencije jednaki.

1.inačica

$$(a+b\cdot\sqrt{2})^2 = 9+4\cdot\sqrt{2} \implies \begin{bmatrix} \text{nadopunjavanje na} \\ \text{potpuni kvadrat} \end{bmatrix} \implies (a+b\cdot\sqrt{2})^2 = 1^2+2\cdot2\cdot\sqrt{2}+(2\cdot\sqrt{2})^2 \implies \\ \implies (a+b\cdot\sqrt{2})^2 = (1+2\cdot\sqrt{2})^2 \implies a+b\cdot\sqrt{2} = 1+2\cdot\sqrt{2} \implies a=1 \\ b=2 \end{bmatrix} \implies a\cdot b = 1\cdot2 \implies a\cdot b = 2.$$

Odgovor je pod D.

2.inačica

$$(a+b\cdot\sqrt{2})^2 = 9+4\cdot\sqrt{2} \implies a^2+2\cdot a\cdot b\cdot\sqrt{2} + (b\cdot\sqrt{2})^2 = 9+4\cdot\sqrt{2} \implies$$
$$\Rightarrow a^2+2\cdot a\cdot b\cdot\sqrt{2}+2\cdot b^2 = 9+4\cdot\sqrt{2} \implies (a^2+2\cdot b^2)+2\cdot a\cdot b\cdot\sqrt{2} = 9+4\cdot\sqrt{2}$$

Iz definicije jednakosti polinoma slijedi:

$$2 \cdot a \cdot b \cdot \sqrt{2} = 4 \cdot \sqrt{2} \implies 2 \cdot a \cdot b \cdot \sqrt{2} = 4 \cdot \sqrt{2} / \cdot \frac{1}{2 \cdot \sqrt{2}} \implies a \cdot b = 2.$$

Odgovor je pod D.

Vježba 388

Ako je
$$(a+b\cdot\sqrt{2})^2 = 9+4\cdot\sqrt{2}$$
, onda je:
A. $a+b=6$ *B*. $a+b=4$ *C*. $a+b=3$ *D*. $a+b=2$
t: C.

Rezultat:

Zadatak 389 (Dvije maturantice, gimnazija)

Koji od sljedećih dvočlanih izraza nije faktor polinoma a⁶ – b⁶?

A.
$$a^2 - b^2$$
 B. $a^2 + b^2$ C. $a - b$ D. $a^2 - a \cdot b + b^2$

Rješenje 389

Ponovimo!

$$x^{2} - y^{2} = (x - y) \cdot (x + y) , \quad (a^{n})^{m} = a^{n \cdot m} , \quad x^{3} - y^{3} = (x - y) \cdot (x^{2} + x \cdot y + y^{2}).$$

$$x^{3} + y^{3} = (x + y) \cdot (x^{2} - x \cdot y + y^{2}).$$

$$a^{6} - b^{6} = (a^{3})^{2} - (b^{3})^{2} = (a^{3} - b^{3}) \cdot (a^{3} + b^{3}) =$$

$$= (a - b) \cdot (a^{2} + a \cdot b + b^{2}) \cdot (a + b) \cdot (a^{2} - a \cdot b + b^{2}).$$

Diskusija

A.
$$a^2 - b^2 = (a-b) \cdot (a+b)$$
 je faktor zadanog polinoma
 $a^6 - b^6 = (a-b) \cdot (a^2 + a \cdot b + b^2) \cdot (a+b) \cdot (a^2 - a \cdot b + b^2)$

B. $a^2 + b^2$ nije faktor zadanog polinoma

$$a^{6} - b^{6} = (a-b) \cdot (a^{2} + a \cdot b + b^{2}) \cdot (a+b) \cdot (a^{2} - a \cdot b + b^{2})$$

C. a-b je faktor zadanog polinoma

$$a^{6}-b^{6} = (a-b)\cdot(a^{2}+a\cdot b+b^{2})\cdot(a+b)\cdot(a^{2}-a\cdot b+b^{2})$$

 \sim

D. $a^2 - a \cdot b + b^2$ je faktor zadanog polinoma $a^6 - b^6 = (a - b) \cdot (a^2 + a \cdot b + b^2) \cdot (a + b) \cdot (a^2 - a \cdot b + b^2)$

Odgovor je pod B.

Vježba 389

Koji od sljedećih dvočlanih izraza nije faktor polinoma $a^6 - b^6$?

A.
$$a^{3}-b^{3}$$
 B. $a^{3}+b^{3}$ C. $a+3$ D. $a^{2}+a\cdot b+b^{2}$
C.

Rezultat:

Zadatak 390 (Tonka, srednja škola)

Odredite s ako je
$$t = \frac{s+r}{s-r} (s \neq r, t \neq 1).$$

Rješenje 390

Ponovimo!

Zakon distribucije množenja prema zbrajanju.

$$a \cdot (b+c) = a \cdot b + a \cdot c \quad , \quad a \cdot b + a \cdot c = a \cdot (b+c).$$

$$t = \frac{s+r}{s-r} \Rightarrow t = \frac{s+r}{s-r} / \cdot (s-r) \Rightarrow t \cdot (s-r) = s+r \Rightarrow t \cdot s - t \cdot r = s+r \Rightarrow$$

$$\Rightarrow t \cdot s - s = r + t \cdot r \Rightarrow s \cdot (t-1) = r \cdot (1+t) \Rightarrow s \cdot (t-1) = r \cdot (1+t) / \cdot \frac{1}{t-1} \Rightarrow$$

$$\Rightarrow s = \frac{r \cdot (1+t)}{t-1} \Rightarrow s = \frac{r \cdot (t+1)}{t-1}.$$

Odredite r ako je
$$t = \frac{s+r}{s-r} (s \neq r, t \neq -1)$$

Rezultat:

Zadatak 391 (Ante, srednja škola)

 $r = \frac{s \cdot (t-1)}{t+1}.$

Ako je
$$x + y = m$$
 i $x^{2} + y^{2} = n$, onda je $x^{3} + y^{3} = \frac{1}{2} \cdot m \cdot (3 \cdot n - m^{2})$. Dokažite!

Rješenje 391

Ponovimo!

$$(a+b)^{2} = a^{2} + 2 \cdot a \cdot b + b^{2}$$
, $a^{3} + b^{3} = (a+b) \cdot (a^{2} - a \cdot b + b^{2}).$

Zakon distribucije množenja prema zbrajanju.

$$a \cdot (b+c) = a \cdot b + a \cdot c \quad , \quad a \cdot b + a \cdot c = a \cdot (b+c).$$

$$\bullet \quad x^{2} + 2 \cdot x \cdot y + y^{2} = (x+y)^{2} \Rightarrow 2 \cdot x \cdot y = (x+y)^{2} - x^{2} - y^{2} \Rightarrow$$

$$\Rightarrow 2 \cdot x \cdot y = (x+y)^{2} - (x^{2} + y^{2}) \Rightarrow 2 \cdot x \cdot y = (x+y)^{2} - (x^{2} + y^{2}) / \cdot \frac{1}{2} \Rightarrow$$

$$\Rightarrow x \cdot y = \frac{1}{2} \cdot ((x+y)^{2} - (x^{2} + y^{2})). \quad (1)$$

$$\bullet \quad x^{3} + y^{3} = (x+y) \cdot (x^{2} - x \cdot y + y^{2}) = (x+y) \cdot (x^{2} + y^{2} - x \cdot y) =$$

$$= (x+y) \cdot ((x^{2} + y^{2}) - x \cdot y) = \begin{bmatrix} z \log g \\ (1) \end{bmatrix} = (x+y) \cdot ((x^{2} + y^{2}) - \frac{1}{2} \cdot ((x+y)^{2} - (x^{2} + y^{2}))) =$$

$$= m \cdot (n - \frac{1}{2} \cdot (m^{2} - n)) = m \cdot (n - \frac{1}{2} \cdot m^{2} + \frac{1}{2} \cdot n) = m \cdot (\frac{n}{1} - \frac{1}{2} \cdot m^{2} + \frac{1}{2} \cdot n) = m \cdot (\frac{3}{2} \cdot n - \frac{1}{2} \cdot m^{2}) =$$

$$= \frac{1}{2} \cdot m \cdot (3 \cdot n - m^{2}).$$

Vježba 391

Ako je
$$x + y = 3$$
 i $x^2 + y^2 = 5$, onda je $x^3 + y^3 = 9$. Dokažite!
ultat: Točno je.

Rezultat: Točno je.

Zadatak 392 (Anna, ekonomska škola)

Ako je $a \cdot b + b \cdot c = 33$, $b \cdot c + a \cdot c = 30$, $a \cdot c + a \cdot b = 15$, izračunajte a + b + c. Rješenje 392

Kjesenje 572

Ponovimo! Za realni broj x njegova je apsolutna vrijednost (modul) broj |x| koji određujemo na ovaj način:

$$|x| = \begin{cases} x, \ x \ge 0 \\ -x, \ x < 0. \end{cases}$$

Ako je broj x pozitivan ili nula, tada je on jednak svojoj apsolutnoj vrijednosti. Za svaki x, $x \ge 0$, vrijedi |x| = x.

Ako je x negativan broj, njegova apsolutna vrijednost je suprotan broj – x koji je pozitivan. Za svaki x, x < 0, je |x| = -x.

$$\sqrt{a^2} = |a|.$$

Napišemo sustav jednadžbi i izračunamo a \cdot b, b \cdot c i a \cdot c.

$$\begin{vmatrix} a \cdot b + b \cdot c = 33 \\ b \cdot c + a \cdot c = 30 \\ a \cdot c + a \cdot b = 15 \end{vmatrix} \Rightarrow \begin{bmatrix} \text{od prve jednadžbe oduzmemo} \\ \text{drugu jednadžbu} \end{bmatrix} \Rightarrow \begin{bmatrix} a \cdot b + b \cdot c - b \cdot c - a \cdot c = 33 - 30 \\ a \cdot c + a \cdot b = 15 \end{bmatrix} \Rightarrow \begin{vmatrix} a \cdot b + b \cdot c - b \cdot c - a \cdot c = 33 - 30 \\ a \cdot c + a \cdot b = 15 \end{vmatrix} \Rightarrow \begin{vmatrix} a \cdot b - a \cdot c = 3 \\ a \cdot c + a \cdot b = 15 \end{vmatrix} \Rightarrow \begin{vmatrix} a \cdot b - a \cdot c = 3 \\ a \cdot c + a \cdot b = 15 \end{vmatrix} \Rightarrow \begin{vmatrix} a \cdot b - a \cdot c = 3 \\ a \cdot c + a \cdot b = 15 \end{vmatrix} \Rightarrow \begin{vmatrix} a \cdot b - a \cdot c = 3 \\ a \cdot c + a \cdot b = 15 \end{vmatrix} \Rightarrow \begin{vmatrix} a \cdot b - a \cdot c = 3 \\ a \cdot b + a \cdot c = 15 \end{vmatrix} \Rightarrow \begin{vmatrix} a \cdot b - a \cdot c = 3 \\ a \cdot b + a \cdot c = 15 \end{vmatrix} \Rightarrow \begin{vmatrix} a \cdot b - a \cdot c = 3 \\ a \cdot b + a \cdot c = 15 \end{vmatrix} \Rightarrow \begin{vmatrix} a \cdot b - a \cdot c = 3 \\ a \cdot b + a \cdot c = 15 \end{vmatrix} \Rightarrow \begin{vmatrix} a \cdot b - a \cdot c = 3 \\ a \cdot b + a \cdot c = 15 \end{vmatrix} \Rightarrow \begin{vmatrix} a \cdot b - a \cdot c = 3 \\ a \cdot b + a \cdot c = 15 \end{vmatrix} \Rightarrow \begin{vmatrix} a \cdot b - a \cdot c = 3 \\ a \cdot b + a \cdot c = 15 \end{vmatrix} \Rightarrow \begin{vmatrix} a \cdot b - a \cdot c = 3 \\ a \cdot b + a \cdot c = 15 \end{vmatrix} \Rightarrow \begin{vmatrix} a \cdot b - a \cdot c = 3 \\ a \cdot b + a \cdot c = 15 \end{vmatrix} \Rightarrow \begin{vmatrix} a \cdot b - a \cdot c = 3 \\ a \cdot b + a \cdot c = 15 \end{vmatrix} \Rightarrow \begin{vmatrix} a \cdot b - a \cdot c = 3 \\ a \cdot b + a \cdot c = 15 \end{vmatrix} \Rightarrow \begin{vmatrix} a \cdot b - a \cdot c = 3 \\ a \cdot b + a \cdot c = 15 \end{vmatrix} \Rightarrow \begin{vmatrix} a \cdot b - a \cdot c = 3 \\ a \cdot b + a \cdot c = 15 \end{vmatrix} \Rightarrow \begin{vmatrix} a \cdot b - a \cdot c = 3 \\ a \cdot b + a \cdot c = 15 \end{vmatrix} \Rightarrow \begin{vmatrix} a \cdot b - a \cdot c = 3 \\ a \cdot b + a \cdot c = 15 \end{vmatrix} \Rightarrow \begin{vmatrix} a \cdot b - a \cdot c = 3 \\ a \cdot b + a \cdot c = 15 \end{vmatrix} \Rightarrow \begin{vmatrix} a \cdot b - a \cdot c = 3 \\ a \cdot b + a \cdot c = 15 \end{vmatrix} \Rightarrow \begin{vmatrix} a \cdot b - a \cdot c = 3 \\ a \cdot b + a \cdot c = 15 \end{vmatrix} \Rightarrow \begin{vmatrix} a \cdot b - a \cdot c = 3 \\ a \cdot b + a \cdot c = 15 \end{vmatrix} \Rightarrow \begin{vmatrix} a \cdot b - a \cdot c = 3 \\ a \cdot b + a \cdot c = 15 \end{vmatrix} \Rightarrow \begin{vmatrix} a \cdot b - a \cdot c = 3 \\ a \cdot b + a \cdot c = 15 \end{vmatrix} \Rightarrow \begin{vmatrix} a \cdot b - a \cdot c = 3 \\ a \cdot b + a \cdot c = 15 \end{vmatrix} \Rightarrow \begin{vmatrix} a \cdot b - a \cdot c = 3 \\ a \cdot b + a \cdot c = 15 \end{vmatrix} \Rightarrow \begin{vmatrix} a \cdot b - a \cdot c = 3 \\ a \cdot b + a \cdot c = 15 \end{vmatrix} \Rightarrow \begin{vmatrix} a \cdot b - a \cdot c = 3 \\ a \cdot b + a \cdot c = 15 \end{vmatrix} \Rightarrow \begin{vmatrix} a \cdot b - a \cdot c = 3 \\ a \cdot b + a \cdot c = 15 \end{vmatrix} \Rightarrow \begin{vmatrix} a \cdot b - a \cdot c = 3 \\ a \cdot b + a \cdot c = 15 \end{vmatrix} \Rightarrow \begin{vmatrix} a \cdot b - a \cdot c = 3 \\ a \cdot b + a \cdot c = 15 \end{vmatrix} \Rightarrow \begin{vmatrix} a \cdot b - a \cdot c = 3 \\ a \cdot b + a \cdot c = 15 \end{vmatrix} \Rightarrow \begin{vmatrix} a \cdot b - a \cdot c = 3 \\ a \cdot b + a \cdot c = 15 \end{vmatrix} \Rightarrow \begin{vmatrix} a \cdot b - a \cdot c = 3 \\ a \cdot b + a \cdot c = 15 \end{vmatrix} \Rightarrow \begin{vmatrix} a \cdot b - a \cdot c = 3 \\ a \cdot b + a \cdot c = 15 \end{vmatrix} \Rightarrow \begin{vmatrix} a \cdot b - a \cdot c = 3 \\ a \cdot b + a \cdot c = 15 \end{vmatrix} \Rightarrow \begin{vmatrix} a \cdot b - a \cdot c = 15 \end{vmatrix} \Rightarrow \begin{vmatrix} a \cdot b - a \cdot c = 3 \\ a \cdot b + a \cdot c = 15 \end{vmatrix} \Rightarrow \begin{vmatrix} a \cdot b - a \cdot c = 15 \end{vmatrix} \Rightarrow \begin{vmatrix} a \cdot b - a \cdot c = 15 \end{vmatrix} \Rightarrow \begin{vmatrix}$$

Računamo b · c i a · c.

•
$$a \cdot b + b \cdot c = 33$$

 $a \cdot b = 9$ $\Rightarrow 9 + b \cdot c = 33 \Rightarrow b \cdot c = 33 - 9 \Rightarrow b \cdot c = 24$
• $a \cdot c + a \cdot b = 15$
 $a \cdot b = 9$ $\Rightarrow a \cdot c + 9 = 15 \Rightarrow a \cdot c = 15 - 9 \Rightarrow a \cdot c = 6.$
stav jednadžbi:

Dobije se novi sustav jednadžbi:

$$\begin{vmatrix} a \cdot b = 9 \\ b \cdot c = 24 \\ a \cdot c = 6 \end{vmatrix} \Rightarrow \begin{bmatrix} \text{pomnožimo} \\ \text{jednadžbe} \end{bmatrix} \Rightarrow a \cdot b \cdot b \cdot c \cdot a \cdot c = 9 \cdot 24 \cdot 6 \Rightarrow a^2 \cdot b^2 \cdot c^2 = 1296 \Rightarrow \\ \Rightarrow (a \cdot b \cdot c)^2 = 1296 \Rightarrow (a \cdot b \cdot c)^2 = 1296 / \checkmark \Rightarrow a \cdot b \cdot c = \pm \sqrt{1296} \Rightarrow a \cdot b \cdot c = \pm 36.$$
znanice a, b i c iznose:

Nepoznanice a, b i c iznose:

•
$$a \cdot b \cdot c = \pm 36$$

 $a \cdot b = 9$ $\Rightarrow \begin{bmatrix} \text{podijelimo} \\ \text{jednadžbe} \end{bmatrix} \Rightarrow \frac{a \cdot b \cdot c}{a \cdot b} = \frac{\pm 36}{9} \Rightarrow \frac{a \cdot b \cdot c}{a \cdot b} = \frac{\pm 36}{9} \Rightarrow c = \pm 4.$
• $a \cdot b \cdot c = \pm 36$
 $b \cdot c = 24$ $\Rightarrow \begin{bmatrix} \text{podijelimo} \\ \text{jednadžbe} \end{bmatrix} \Rightarrow \frac{a \cdot b \cdot c}{b \cdot c} = \frac{\pm 36}{24} \Rightarrow \frac{a \cdot b \cdot c}{b \cdot c} = \frac{\pm 36}{24} \Rightarrow a = \pm \frac{3}{2}.$
• $a \cdot b \cdot c = \pm 36$
 $a \cdot c = 6$ $\Rightarrow \begin{bmatrix} \text{podijelimo} \\ \text{jednadžbe} \end{bmatrix} \Rightarrow \frac{a \cdot b \cdot c}{a \cdot c} = \frac{\pm 36}{6} \Rightarrow \frac{a \cdot b \cdot c}{a \cdot c} = \frac{\pm 36}{6} \Rightarrow b = \pm 6.$

Tada je

$$\begin{array}{c} a = \frac{3}{2} \\ b = 6 \\ c = 4 \end{array} \right\} \implies a + b + c = \frac{3}{2} + 6 + 4 = 1.5 + 6 + 4 = 11.5.$$

$$\begin{array}{c} a = -\frac{3}{2} \\ b = -6 \\ c = -4 \end{array} \right\} \implies a + b + c = -\frac{3}{2} - 6 - 4 = -1.5 - 6 - 4 = -11.5.$$

Ako je $a \cdot b + b \cdot c = 33$, $b \cdot c + a \cdot c = 30$, $a \cdot c + a \cdot b = 15$, izračunajte $a \cdot b \cdot c$. **Rezultat:** ± 36 .

Zadatak 393 (Anna, ekonomska škola)

Izračunajte :
$$\frac{1}{0.1} + \frac{2}{0.2} + \frac{3}{0.3} + \frac{4}{0.4} + \frac{5}{0.5} + \frac{6}{0.6} + \frac{7}{0.7} + \frac{8}{0.8} + \frac{9}{0.9}$$

Rješenje 393

Ponovimo!

1.inačica

$$n = \frac{n}{1}$$
, $\frac{\frac{a}{b}}{\frac{c}{d}} = \frac{a \cdot d}{b \cdot c}$.

Konačni decimalni broj piše se u obliku decimalnog razlomka tako da se u brojnik napiše zadani decimalni broj bez decimalne točke, a u nazivnik se napiše dekadska jedinica koja ima toliko nula koliko decimalni broj ima decimala. Na primjer:

$$5.3 = 5.3 = \frac{53}{10} = \frac{53}{10}$$
, $3.49 = 3.49 = \frac{349}{100} = \frac{349}{100}$, $0.007 = 0.007 = \frac{7}{1000} = \frac{7}{1000}$.

Proširiti razlomak znači brojnik i nazivnik tog razlomka pomnožiti istim brojem različitim od nule i jedinice.

$$\frac{a}{b} = \frac{a \cdot n}{b \cdot n}.$$

Skratiti razlomak znači brojnik i nazivnik tog razlomka podijeliti istim brojem različitim od nule i jedinice.

$$\frac{a \cdot n}{b \cdot n} = \frac{a}{b}.$$

1	2	3	4	5 6	7 8	9	svaki raz	zlomak]_
$\frac{1}{0.1}$	0.2	0.3	$+\overline{0.4}$	$0.5^+ \overline{0.6}^-$	$+\overline{0.7}+\overline{0.3}$	$8^+\overline{0.9}^-$	proširim	o brojem	10
1.10	2.	10	3·10	4.10	5.10	6.10	7·10	8·10	9.10
$=\frac{1}{0.1 \cdot 10}$	+0.2	.10	0.3.10	$+\frac{1}{0.4 \cdot 10}$	$+\frac{1}{0.5 \cdot 10}$	$+\frac{1}{0.6 \cdot 10}$	$0.7 \cdot 10$	$0.8 \cdot 10$	$+\frac{1}{0.9 \cdot 10} =$

 $=\frac{10}{1}+\frac{20}{2}+\frac{30}{3}+\frac{40}{4}+\frac{50}{5}+\frac{60}{6}+\frac{70}{7}+\frac{80}{8}+\frac{90}{9}=10+10+10+10+10+10+10+10+10=90.$

Vježba 393

Izračunajte :
$$\frac{1}{0.1} + \frac{2}{0.2} + \frac{3}{0.3} + \frac{4}{0.4} + \frac{5}{0.5} + \frac{6}{0.6} + \frac{7}{0.7}$$
.
at: 70.

Rezultat:

Zadatak 394 (Anna, ekonomska škola)

Izračunajte: $1-2+3-4+5-6+7-8+ \dots +99-100+101$.

Rješenje 394

Ponovimo!

Zakon distribucije množenja prema zbrajanju.

$$a \cdot (b+c) = a \cdot b + a \cdot c$$
, $a \cdot b + a \cdot c = a \cdot (b+c)$.

1.inačica

$$1-2+3-4+5-6+7-8+ \dots +99-100+101 = (1-2)+(3-4)+(5-6)+(7-8)+ \dots + (99-100)+101 = (1-2)+(3-4)+(3-4)+(3-6)+($$

$$= 50 \cdot (-1) + 101 = -50 + 101 = 51.$$

2.inačica

$$1-2+3-4+5-6+7-8+ \dots +99-100+101 = 1+(-2+3)+(-4+5)+(-6+7)+ \dots +(-100+101) = 1+(-2+3)+(-4+5)+(-6+7)+ \dots +(-100+101) = 1+(+1+1+1+\dots +1) = 1+50 \cdot 1 = 1+50 = 51.$$
50 je članova

/ježba 394

Vježba 394

Izračunajte:
$$1-2+3-4+5-6+7-8+ \dots +99-100+100$$
.
t: 50.

Rezultat:

Zadatak 395 (KNM, gimnazija)

Koliko je
$$\left(1+\sqrt{a}\right)\cdot\left(1+\sqrt[4]{a}\right)\cdot\left(1+\sqrt[8]{a}\right)\cdot\left(1+\sqrt[16]{a}\right)\cdot\left(1-\sqrt[16]{a}\right)$$
, za $a=2$?

Rješenje 395

Ponovimo!

$$\begin{pmatrix} n \cdot p \sqrt{a} \end{pmatrix}^{p} = \sqrt[n]{a} , \quad \left(\sqrt{a}\right)^{2} = a , \quad (a-b) \cdot (a+b) = a^{2} - b^{2}. \\ (1+\sqrt{a}) \cdot (1+\sqrt[4]{a}) \cdot (1+\sqrt[8]{a}) \cdot (1+\sqrt[8]{a}) \cdot (1+\sqrt[16]{a}) = \\ = (1+\sqrt{a}) \cdot (1+\sqrt[4]{a}) \cdot (1+\sqrt[4]{a}) \cdot (1+\sqrt[8]{a}) \cdot (1+\sqrt[8]{a}) \cdot (1+\sqrt[6]{a}) + \\ (1+\sqrt[6]{a}) \cdot (1+\sqrt[6]{a}) \cdot (1+\sqrt[6]{a}) \cdot (1+\sqrt[6]{a}) + \\ = (1+\sqrt{a}) \cdot (1+\sqrt[6]{a}) \cdot (1+\sqrt[8]{a}) \cdot (1-(\sqrt[16]{a})^{2}) = (1+\sqrt{a}) \cdot (1+\sqrt[4]{a}) \cdot (1+\sqrt[8]{a}) \cdot (1-\sqrt[8]{a}) = \\ = (1+\sqrt{a}) \cdot (1+\sqrt[4]{a}) \cdot (1+\sqrt[8]{a}) \cdot (1-\sqrt[8]{a}) = \\ = (1+\sqrt{a}) \cdot (1+\sqrt[4]{a}) \cdot (1+\sqrt[8]{a}) \cdot (1-\sqrt[8]{a}) = \\ = (1+\sqrt{a}) \cdot (1+\sqrt[4]{a}) \cdot (1+\sqrt[8]{a}) \cdot (1-\sqrt[8]{a}) = \\ = (1+\sqrt{a}) \cdot (1+\sqrt[4]{a}) \cdot (1+\sqrt[8]{a}) \cdot (1-\sqrt[8]{a}) = \\ = (1+\sqrt{a}) \cdot (1+\sqrt[4]{a}) \cdot (1+\sqrt[8]{a}) \cdot (1-\sqrt[8]{a}) = \\ = (1+\sqrt{a}) \cdot (1+\sqrt[4]{a}) \cdot (1+\sqrt[8]{a}) \cdot (1-\sqrt[8]{a}) = \\ = (1+\sqrt{a}) \cdot (1+\sqrt[4]{a}) \cdot (1+\sqrt[8]{a}) \cdot (1-\sqrt[8]{a}) = \\ = (1+\sqrt{a}) \cdot (1+\sqrt[4]{a}) \cdot (1+\sqrt[8]{a}) \cdot (1-\sqrt[8]{a}) = \\ = (1+\sqrt{a}) \cdot (1+\sqrt[4]{a}) \cdot (1+\sqrt[8]{a}) \cdot (1-\sqrt[8]{a}) = \\ = (1+\sqrt{a}) \cdot (1+\sqrt[4]{a}) \cdot (1+\sqrt[8]{a}) \cdot (1-\sqrt[8]{a}) = \\ = (1+\sqrt{a}) \cdot (1+\sqrt[4]{a}) \cdot (1+\sqrt[8]{a}) \cdot (1-\sqrt[8]{a}) = \\ = (1+\sqrt{a}) \cdot (1+\sqrt[4]{a}) \cdot (1+\sqrt[8]{a}) \cdot (1-\sqrt[8]{a}) = \\ = (1+\sqrt{a}) \cdot (1+\sqrt[4]{a}) \cdot (1+\sqrt[8]{a}) \cdot (1-\sqrt[8]{a}) = \\ = (1+\sqrt{a}) \cdot (1+\sqrt[4]{a}) \cdot (1+\sqrt[8]{a}) \cdot (1-\sqrt[8]{a}) = \\ = (1+\sqrt{a}) \cdot (1+\sqrt[4]{a}) \cdot (1+\sqrt[8]{a}) \cdot (1-\sqrt[8]{a}) = \\ = (1+\sqrt{a}) \cdot (1+\sqrt[4]{a}) \cdot (1+\sqrt[8]{a}) \cdot (1-\sqrt[8]{a}) = \\ = (1+\sqrt{a}) \cdot (1+\sqrt[4]{a}) \cdot (1+\sqrt[8]{a}) \cdot (1-\sqrt[8]{a}) = \\ = (1+\sqrt{a}) \cdot (1+\sqrt{a}) + \\ = (1+\sqrt{a}) \cdot (1$$

$$= (1+\sqrt{a}) \cdot (1+\sqrt[4]{a}) \cdot (1-\sqrt[4]{a}) = (1+\sqrt{a}) \cdot (1+\sqrt[4]{a}) \cdot (1-\sqrt[4]{a}) = (1+\sqrt{a}) \cdot (1-(\sqrt[4]{a})^2) =$$
razlika kvadrata
razlika kvadrata

$$= \left(1 + \sqrt{a}\right) \cdot \left(1 - \sqrt{a}\right) = \begin{bmatrix} \operatorname{razlika} \\ \operatorname{kvadrata} \end{bmatrix} = 1 - \left(\sqrt{a}\right)^2 = 1 - a = \begin{bmatrix} a = 2 \end{bmatrix} = 1 - 2 = -1.$$

Koliko je
$$\left(1+\sqrt{a}\right)\cdot\left(1+\frac{4}{\sqrt{a}}\right)\cdot\left(1+\frac{8}{\sqrt{a}}\right)\cdot\left(1+\frac{16}{\sqrt{a}}\right)\cdot\left(1-\frac{16}{\sqrt{a}}\right)$$
, za $a = 6$?
t: -5 .

Rezultat:

Zadatak 396 (Viki, ekonomska škola)

Koji je rezultat dijeljenja
$$\left(\frac{3 \cdot a - b}{b^2} + \frac{1}{b}\right) : \frac{6 \cdot a}{b}$$
, za $a \neq 0, b \neq 0$?
 $A \cdot \frac{2}{a} \qquad B \cdot \frac{2}{b} \qquad C \cdot \frac{1}{2 \cdot a} \qquad D \cdot \frac{1}{2 \cdot b}$

Rješenje 396

Ponovimo!

$$\frac{a}{b} + \frac{c}{d} = \frac{a \cdot d + b \cdot c}{b \cdot d} , \quad \frac{a}{b} \cdot \frac{c}{d} = \frac{a \cdot c}{b \cdot d} , \quad \frac{a}{b} \cdot \frac{c}{d} = \frac{a}{b} \cdot \frac{d}{c} = \frac{a \cdot d}{b \cdot c}.$$

$$\left(\frac{3 \cdot a - b}{b^2} + \frac{1}{b}\right) : \frac{6 \cdot a}{b} = \frac{3 \cdot a - b + b}{b^2} : \frac{6 \cdot a}{b} = \frac{3 \cdot a - b + b}{b^2} : \frac{6 \cdot a}{b} = \frac{3 \cdot a}{b^2} : \frac{6 \cdot a}{b} = \frac{3 \cdot a}{b^2} : \frac{6 \cdot a}{b} = \frac{3 \cdot a}{b^2} : \frac{b}{6 \cdot a} = \frac{3 \cdot a}{b^2} : \frac{b}{6 \cdot a} = \frac{3 \cdot a}{b^2} : \frac{b}{6 \cdot a} = \frac{1}{2 \cdot b}.$$
Odgovor je pod D.
Vježba 396

Vježba 396

K

Koji je rezultat dijeljenja
$$\left(\frac{3 \cdot a - b}{b^2} + \frac{1}{b}\right) : \frac{3 \cdot a}{b}$$
, za $a \neq 0, b \neq 0$?
 $A \cdot \frac{2}{a} \qquad B \cdot \frac{2}{b} \qquad C \cdot \frac{1}{a} \qquad D \cdot \frac{1}{b}$

Rezultat: D.

Zadatak 397 (Ofelija ©, ekonomska škola)

Koliki je rezultat umnoška
$$(\sqrt{3}-1)^2 \cdot (\sqrt{3}+1)^2$$
?
A. $\sqrt{3}-1$ *B*. $\sqrt{3}+1$ *C*. 4 *D*. 8

Rješenje 397

Ponovimo!

$$(a-b)^{2} = a^{2} - 2 \cdot a \cdot b + b^{2} , \quad (a+b)^{2} = a^{2} + 2 \cdot a \cdot b + b^{2} , \quad (\sqrt{a})^{2} = a$$
$$(a-b) \cdot (a+b) = a^{2} - b^{2} , \quad (a \cdot b)^{n} = a^{n} \cdot b^{n}.$$

1.inačica

$$\left(\sqrt{3}-1\right)^{2} \cdot \left(\sqrt{3}+1\right)^{2} = \left(\left(\sqrt{3}\right)^{2}-2 \cdot \sqrt{3} \cdot 1+1^{2}\right) \cdot \left(\left(\sqrt{3}\right)^{2}+2 \cdot \sqrt{3} \cdot 1+1^{2}\right) =$$

$$= (3 - 2 \cdot \sqrt{3} + 1) \cdot (3 + 2 \cdot \sqrt{3} + 1) = (4 - 2 \cdot \sqrt{3}) \cdot (4 + 2 \cdot \sqrt{3}) = \underbrace{(4 - 2 \cdot \sqrt{3}) \cdot (4 + 2 \cdot \sqrt{3})}_{\text{razlika kvadrata}} = \underbrace{(2 - \sqrt{3})^2 + (2 \cdot \sqrt{3})^2 + (2 \cdot \sqrt{3})^2}_{\text{razlika kvadrata}} = \underbrace{(2 - \sqrt{3})^2 + (2 \cdot \sqrt{3})^2 + (2 \cdot \sqrt{3})^2}_{\text{razlika kvadrata}} = \underbrace{(2 - \sqrt{3})^2 + (2 \cdot \sqrt{3})^2 + (2 \cdot \sqrt{3})^2}_{\text{razlika kvadrata}} = \underbrace{(2 - \sqrt{3})^2 + (2 \cdot \sqrt{3})^2 + (2 \cdot \sqrt{3})^2}_{\text{razlika kvadrata}} = \underbrace{(2 - \sqrt{3})^2 + (2 \cdot \sqrt{3})^2 + (2 \cdot \sqrt{3})^2}_{\text{razlika kvadrata}} = \underbrace{(2 - \sqrt{3})^2 + (2 \cdot \sqrt{3})^2 + (2 \cdot \sqrt{3})^2}_{\text{razlika kvadrata}} = \underbrace{(2 - \sqrt{3})^2 + (2 \cdot \sqrt{3})^2 + (2 \cdot \sqrt{3})^2}_{\text{razlika kvadrata}} = \underbrace{(2 - \sqrt{3})^2 + (2 \cdot \sqrt{3})^2 + (2 \cdot \sqrt{3})^2}_{\text{razlika kvadrata}} = \underbrace{(2 - \sqrt{3})^2 + (2 \cdot \sqrt{3})^2 + (2 \cdot \sqrt{3})^2}_{\text{razlika kvadrata}} = \underbrace{(2 - \sqrt{3})^2 + (2 \cdot \sqrt{3})^2 + (2 \cdot \sqrt{3})^2}_{\text{razlika kvadrata}} = \underbrace{(2 - \sqrt{3})^2 + (2 \cdot \sqrt{3})^2}_{\text{razlika kvadrata}} = \underbrace{(2 - \sqrt{3})^2 + (2 \cdot \sqrt{3})^2 + (2 \cdot \sqrt{3})^2}_{\text{razlika kvadrata}} = \underbrace{(2 - \sqrt{3})^2 + (2 \cdot \sqrt{3})^2 + (2 \cdot \sqrt{3})^2}_{\text{razlika kvadrata}} = \underbrace{(2 - \sqrt{3})^2 + (2 \cdot \sqrt{3})^2 + (2 \cdot \sqrt{3})^2}_{\text{razlika kvadrata}} = \underbrace{(2 - \sqrt{3})^2 + (2 \cdot \sqrt{3})^2 + (2 \cdot \sqrt{3})^2}_{\text{razlika kvadrata}} = \underbrace{(2 - \sqrt{3})^2 + (2 \cdot \sqrt{3})^2 + (2 \cdot \sqrt{3})^2}_{\text{razlika kvadrata}} = \underbrace{(2 - \sqrt{3})^2 + (2 \cdot \sqrt{3})^2 + (2 \cdot \sqrt{3})^2}_{\text{razlika kvadrata}} = \underbrace{(2 - \sqrt{3})^2 + (2 \cdot \sqrt{3})^2 + (2 \cdot \sqrt{3})^2}_{\text{razlika kvadrata}} = \underbrace{(2 - \sqrt{3})^2 + (2 \cdot \sqrt{3})^2 + (2 \cdot \sqrt{3})^2}_{\text{razlika kvadrata}} = \underbrace{(2 - \sqrt{3})^2 + (2 \cdot \sqrt{3})^2 + (2 \cdot \sqrt{3})^2}_{\text{razlika kvadrata}} = \underbrace{(2 - \sqrt{3})^2 + (2 \cdot \sqrt{3})^2 + (2 \cdot \sqrt{3})^2}_{\text{razlika kvadrata}} = \underbrace{(2 - \sqrt{3})^2 + (2 \cdot \sqrt{3})^2 + (2 \cdot \sqrt{3})^2}_{\text{razlika kvadrata}} = \underbrace{(2 - \sqrt{3})^2 + (2 \cdot \sqrt{3})^2 + (2 \cdot \sqrt{3})^2}_{\text{razlika kvadrata}} = \underbrace{(2 - \sqrt{3})^2 + (2 \cdot \sqrt{3})^2 + (2 \cdot \sqrt{3})^2}_{\text{razlika kvadrata}} = \underbrace{(2 - \sqrt{3})^2 + (2 \cdot \sqrt{3})^2 + (2 \cdot \sqrt{3})^2}_{\text{razlika kvadrata}} = \underbrace{(2 - \sqrt{3})^2 + (2 \cdot \sqrt{3})^2 + (2 \cdot \sqrt{3})^2}_{\text{razlika kvadrata}} = \underbrace{(2 - \sqrt{3})^2 + (2 \cdot \sqrt{3})^2 + (2 \cdot \sqrt{3})^2}_{\text{razlika kvadrata}} = \underbrace{(2 - \sqrt{3})^2 + (2 \cdot \sqrt{3})^2 +$$

$$= 4^{2} - (2 \cdot \sqrt{3})^{2} = 4^{2} - 2^{2} \cdot (\sqrt{3})^{2} = 16 - 4 \cdot 3 = 16 - 12 = 4.$$

Odgovor je pod C.

2.inačica

$$\left(\sqrt{3}-1\right)^{2} \cdot \left(\sqrt{3}+1\right)^{2} = \left(\left(\sqrt{3}-1\right) \cdot \left(\sqrt{3}+1\right)\right)^{2} = \left(\underbrace{\left(\sqrt{3}-1\right) \cdot \left(\sqrt{3}+1\right)}_{\text{razlika kvadrata}}\right)^{2} = \left(\left(\sqrt{3}\right)^{2}-1^{2}\right)^{2} = (3-1)^{2} = 2^{2} = 4.$$

Odgovor je pod C.

Vježba 397

Koliki je rezultat umnoška
$$(\sqrt{5}-1)^2 \cdot (\sqrt{5}+1)^2$$
?
A. $\sqrt{5}-1$ B. $\sqrt{5}+1$ C. 8 D. 16
t: D.
k 398 (Nevzat, srednja škola)
Izračunaj $\frac{1}{a} - \frac{1}{b} + \frac{1}{c}$, ako je $a = 3 \cdot b = 4 \cdot c$.

Rezultat:

Zadatak 398 (Nevzat, srednja škola)

Izračunaj
$$\frac{1}{a} - \frac{1}{b} + \frac{1}{c}$$
, ako je $a = 3 \cdot b = 4 \cdot c$.
je 398
Ponovimo!

Rješenje 398

Ponovimo!

$$n = \frac{n}{1}$$
, $\frac{\frac{a}{b}}{\frac{c}{d}} = \frac{a \cdot d}{b \cdot c}$, $\frac{a}{n} - \frac{b}{n} = \frac{a - b}{n}$, $\frac{a}{n} + \frac{b}{n} = \frac{a + b}{n}$.

Iz jednakosti

$$a = 3 \cdot b = 4 \cdot c$$

dobije se

$$\begin{array}{c} a = 3 \cdot b \\ a = 4 \cdot c \end{array} \right\} \Rightarrow \begin{array}{c} a = 3 \cdot b / \cdot \frac{1}{3} \\ a = 4 \cdot c / \cdot \frac{1}{4} \end{array} \right\} \Rightarrow \begin{array}{c} b = \frac{a}{3} \\ \Rightarrow \\ c = \frac{a}{4} \end{array} \right\}.$$

Tada je

$$\frac{\frac{1}{a} - \frac{1}{b} + \frac{1}{c}}{\frac{1}{a} - \frac{1}{a} + \frac{1}{a}} = \frac{\frac{1}{a} - \frac{1}{a} + \frac{1}{a}}{\frac{3}{3} + \frac{1}{a}} = \frac{\frac{1}{a} - \frac{1}{a} + \frac{1}{a}}{\frac{3}{3} + \frac{1}{a}} = \frac{\frac{1}{a} - \frac{3}{a} + \frac{4}{a}}{\frac{1}{a} + \frac{3}{a} + \frac{4}{a}} = \frac{\frac{1-3+4}{a}}{\frac{1+3+4}{a}} = \frac{\frac{2}{a}}{\frac{1}{a} - \frac{2}{a}} = \frac{2}{1} = \frac{2}{8} = \frac{2}$$

Izračunaj
$$\frac{\frac{1}{a} + \frac{1}{b} + \frac{1}{c}}{\frac{1}{a} - \frac{1}{b} + \frac{1}{c}}$$
, ako je $a = 3 \cdot b = 4 \cdot c$.
t: 4.

Rezultat:

Zadatak 399 (Mira, gimnazija)

Pojednostavni
$$\left((a-b) \cdot \sqrt{\frac{a+b}{a-b}} + a-b \right) \cdot (a-b) \cdot \left(\sqrt{\frac{a+b}{a-b}} - 1 \right).$$

Rješenje 399

Ponovimo!

Zakon distribucije množenja prema zbrajanju.

Ponovimo!
istribucije množenja prema zbrajanju.

$$a \cdot (b+c) = a \cdot b + a \cdot c$$
, $a \cdot b + a \cdot c = a \cdot (b+c)$.
 $(a-b) \cdot (a+b) = a^2 - b^2$, $(\sqrt{a})^2 = a^2$, $(a \cdot b)^n = a^n \cdot b^n$, $n = \frac{n}{1}$.
 $\frac{a}{b} - \frac{c}{d} = \frac{a \cdot d - b \cdot c}{b \cdot d}$, $(a-b)^2 = a^2 - 2 \cdot a \cdot b + b^2$.
1.inačica

$$\left(\left(a-b\right) \cdot \sqrt{\frac{a+b}{a-b}} + a-b \right) \cdot \left(a-b\right) \cdot \left(\sqrt{\frac{a+b}{a-b}} - 1\right) = \left(\left(a-b\right) \cdot \sqrt{\frac{a+b}{a-b}} + \left(a-b\right) \right) \cdot \left(a-b\right) \cdot \left(\sqrt{\frac{a+b}{a-b}} - 1\right) =$$

$$= \left(a-b\right) \cdot \left(\sqrt{\frac{a+b}{a-b}} + 1\right) \cdot \left(a-b\right) \cdot \left(\sqrt{\frac{a+b}{a-b}} - 1\right) = \left(a-b\right)^2 \cdot \left(\sqrt{\frac{a+b}{a-b}} + 1\right) \cdot \left(\sqrt{\frac{a+b}{a-b}} - 1\right) = \left[\begin{array}{c} \operatorname{razlika} \\ \operatorname{kvadrata} \end{array} \right] =$$

$$= \left(a-b\right)^2 \cdot \left(\left(\sqrt{\frac{a+b}{a-b}}\right)^2 - 1^2 \right) = \left(a-b\right)^2 \cdot \left(\frac{a+b}{a-b} - 1\right) = \left(a-b\right)^2 \cdot \left(\frac{a+b}{a-b} - \frac{1}{1}\right) = \left(a-b\right)^2 \cdot \frac{a+b-(a-b)}{a-b} =$$

$$= \left(a-b\right)^2 \cdot \frac{a+b-a+b}{a-b} = \left(a-b\right)^2 \cdot \frac{a+b-a+b}{a-b} = \left(a-b\right)^2 \cdot \frac{2 \cdot b}{a-b} = \left(a-b\right)^2 \cdot \frac{2 \cdot b}{a-b} =$$

$$= \left(a-b\right) \cdot 2 \cdot b = 2 \cdot b \cdot \left(a-b\right).$$

2.inačica

$$\left((a-b)\cdot\sqrt{\frac{a+b}{a-b}}+a-b\right)\cdot\left(a-b\right)\cdot\left(\sqrt{\frac{a+b}{a-b}}-1\right) = \left((a-b)\cdot\sqrt{\frac{a+b}{a-b}}+(a-b)\right)\cdot\left((a-b)\cdot\sqrt{\frac{a+b}{a-b}}-(a-b)\right) = \left((a-b)\cdot\sqrt{\frac{a+b}{a-b}}+a-b\right)\cdot\left(a$$

$$= \begin{bmatrix} \operatorname{razlika} \\ \operatorname{kvadrata} \end{bmatrix} = \left((a-b) \cdot \sqrt{\frac{a+b}{a-b}} \right)^2 - (a-b)^2 = (a-b)^2 \cdot \left(\sqrt{\frac{a+b}{a-b}} \right)^2 - (a-b)^2 = (a-b)^2 \cdot \frac{a+b}{a-b} - (a-b)^2 = (a-b)^2 \cdot \frac{a+b}{a-b} - (a-b)^2 = (a-b) \cdot (a+b) - (a-b)^2 = (a-b) \cdot ((a+b) - (a-b)) = (a-b) \cdot (a+b-a+b) = (a-b) \cdot ((a+b-a+b)) = (a-b) \cdot (a+b-a+b) = (a-b) \cdot (2 \cdot b) = 2 \cdot b \cdot (a-b).$$

3.inačica

$$\left((a-b) \cdot \sqrt{\frac{a+b}{a-b}} + a-b \right) \cdot (a-b) \cdot \left(\sqrt{\frac{a+b}{a-b}} - 1 \right) = \left((a-b) \cdot \sqrt{\frac{a+b}{a-b}} + (a-b) \right) \cdot \left((a-b) \cdot \sqrt{\frac{a+b}{a-b}} - (a-b) \right) =$$

$$= \left[\begin{array}{c} \text{razlika} \\ \text{kvadrata} \end{array} \right] = \left((a-b) \cdot \sqrt{\frac{a+b}{a-b}} \right)^2 - (a-b)^2 = (a-b)^2 \cdot \left(\sqrt{\frac{a+b}{a-b}} \right)^2 - (a-b)^2 =$$

$$= (a-b)^2 \cdot \frac{a+b}{a-b} - (a-b)^2 = (a-b)^2 \cdot \frac{a+b}{a-b} - (a-b)^2 = (a-b) \cdot (a+b) - (a-b)^2 =$$

$$= \left[\begin{array}{c} \text{razlika kvadrata} \\ \text{kvadrat razlike} \end{array} \right] = a^2 - b^2 - \left(a^2 - 2 \cdot a \cdot b + b^2 \right) = a^2 - b^2 - a^2 + 2 \cdot a \cdot b - b^2 =$$

$$= a^2 - b^2 - a^2 + 2 \cdot a \cdot b - b^2 = 2 \cdot a \cdot b + 2 \cdot b^2 = 2 \cdot b \cdot (a-b).$$
Vježba 399
Pojednostavni $\left((a-1) \cdot \sqrt{\frac{a+1}{a-1}} + a-1 \right) \cdot (a-1) \cdot \left(\sqrt{\frac{a+1}{a-1}} - 1 \right).$
Rezultat: $2 \cdot (a-1).$

• (4

Zadatak 400 (Tony, srednja škola)

Koliko je
$$5 \cdot 2^{2010} - 3 \cdot 2^{2011} + 14 \cdot 2^{2009}$$
?
A. $9 \cdot 2^{2009}$ B. $7 \cdot 2^{2010}$ C. $3 \cdot 2^{2011}$ D. $5 \cdot 2^{2012}$

Rješenje 400

Ponovimo!

$$a^n \cdot a^m = a^{n+m}$$
, $a^1 = a$.

Zakon distribucije množenja prema zbrajanju.

$$a \cdot (b+c) = a \cdot b + a \cdot c$$
, $a \cdot b + a \cdot c = a \cdot (b+c)$.

$$5 \cdot 2^{2010} - 3 \cdot 2^{2011} + 14 \cdot 2^{2009} = 5 \cdot 2^{2009} \cdot 2^{1} - 3 \cdot 2^{2009} \cdot 2^{2} + 14 \cdot 2^{2009} =$$

$$= 2^{2009} \cdot (5 \cdot 2^{1} - 3 \cdot 2^{2} + 14) = 2^{2009} \cdot (5 \cdot 2 - 3 \cdot 4 + 14) = 2^{2009} \cdot (10 - 12 + 14) = 2^{2009} \cdot 12 =$$

$$= 12 \cdot 2^{2009} = 3 \cdot 4 \cdot 2^{2009} = 3 \cdot 2^{2} \cdot 2^{2009} = 3 \cdot 2^{2011}.$$

Odgovor je pod C.

Koliko je
$$5 \cdot 2^{2010} + 3 \cdot 2^{2011} - 14 \cdot 2^{2009}$$
?
A. 2^{2009} B. 2^{2010} C. 2^{2011} D. 2^{2012}

Rezultat: D.

WWW.halapa.com